MATRICES

DEFINITION

A rectangular arrangement of elements in rows and columns, is called a matrix. Such a rectangular arrangement of numbers is enclosed by small () or big [] brackets. Generally a matrix is represented by a capital latter A, B, C...... etc. and its element are represented by small letters a, b, c, x, y etc.

Following are some examples of a matrix:

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \qquad B = \begin{bmatrix} 1 & 5 & 3 \\ 4 & 0 & 2 \end{bmatrix} \qquad C = \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \qquad D = [1, 5, 6], \qquad E = [5]$$

ORDER OF MATRIX

A matrix which has m rows and n columns is called a matrix of order m × n, and its represented by

$$A_{m \times n}$$
 or $A = [a_{ij}]_{m \times n}$

It is obvious to note that a matrix of order $m \times n$ contains mn elements. Every row of such a matrix contains n elements and every column contains m elements.

TYPES OF MATRICES

Row matrix

If in a matrix, there is only one row, then it is called a Row Matrix.

Thus $A = [a_{ij}]_{m \times n}$ is a row matrix if m = 1

Column Matrix

If in a matrix, there is only one column, then it is called a column matrix.

Thus $A = [a_{ii}]_{m \times n}$ is a column matrix if n = 1.

Square matrix

If number of rows and number of columns in a matrix are equal, then it is called a square matrix.

Thus $A = [a_{ii}]_{m \times n}$ is a square matrix if m = n.

Note: (a) If $m \neq n$ then matrix is called a rectangular matrix.

- (b) The elements of a square matrix A for which i = j i.e., a_{11} , a_{22} , a_{33} ,..... a_{nn} are called principal diagonal elements and the line joining these elements is called the principal diagonal or leading diagonal of matrix A.
- (c) Trace of a matrix: The sum of principal diagonal elements of a square matrix A is called the trace of matrix A which is denoted by trace A. Trace $A = a_{11} + a_{22} +a_{nn}$

Singleton matrix

If in a matrix there is only one element then it is called singleton matrix.

Thus $A = [a_{ij}]_{m \times n}$ is a singleton matrix if m = n = 1.

Null or zero matrix

If in a matrix all the elements are zero then it is called a zero matrix and it is generally denoted by O.

Thus $A = [a_{ij}]_{m \times n}$ is a zero matrix if $a_{ij} = 0$ for all i and j.

Diagonal matrix

If all elements except the principal diagonal in a square matrix are zero, it is called a diagonal matrix.

Thus a square matrix $A = [a_{ij}]$ is a diagonal matrix if $a_{ij} = 0$, when $i \neq j$.

Note: (a) No element of principal diagonal in diagonal matrix is zero.

(b) Number of zero is a diagonal matrix is given by $n^2 - n$ where n is a order of the matrix.

Scalar Matrix

If all the elements of the diagonal in a diagonal matrix are equal, it is called a scalar matrix.

Thus a square matrix $A[a_{ij}]$ is a scalar matrix is

$$a_{ij} = \begin{cases} 0 & i \neq j \\ k & i = j \end{cases} \text{ where } k \text{ is a constant.}$$

Unit matrix

If all elements of principal diagonal in a diagonal matrix are 1, then it is called unit matrix. A unit matrix of order n is denoted by I_n .

Thus a square matrix

$$A = [a_{ij}] \text{ is a unit matrix if} \quad a_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

Note: Every unit matrix is a scalar matrix.

Triangular matrix

A square matrix $[a_{ij}]$ is said to be triangular if each element above or below the principal diagonal is zero. It is of two types -

- (a) Upper triangular matrix: A square matrix $[a_{ij}]$ is called the upper triangular matrix, if $a_{ij} = 0$ when i > j.
- (b) Lower triangular matrix : A square matrix $[a_{ij}]$ is called the lower triangular matrix, if $a_{ij} = 0$ when i < j

Note: Minimum number of zero in a triangular matrix is given by $\frac{n(n-1)}{2}$ where n is order of matrix.

Equal matrix

Two matrices A and B are said to be equal if they are of same order and their corresponding elements are equal.

Singular matrix

Matrix A is said to be singular matrix if its determinant |A| = 0, otherwise non-singular matrix i.e.,

If det
$$|A| = 0$$
 \Rightarrow singular and det $|A| \neq 0$ \Rightarrow non-singular

ADDITION AND SUBTRACTION OF MATRICES

If $A = [a_{ij}]_{m \times n}$ and $B = [b_{ij}]_{m \times n}$ are two matrices of the same order then their sum A + B is a matrix whose each element is the sum of corresponding elements.

i.e.,
$$A + B = [a_{ij} + b_{ij}]_{m \times n}$$

$$A - B \text{ is defined as } A - B = [a_{ij} - b_{ij}]_{m \times n}$$

Note: Matrix addition and subtraction can be possible only when matrices are of same order.

Properties of matrices addition

If A, B and C are matrices of same order, then-

- (i) A + B = B + A (Commutative Law)
- (ii) (A + B) + C = A + (B + C) (Associative law)
- (iii) A + O = O + A = A, where O is zero matrix which is additive identity of the matrix.
- (iv) A + (-A) = 0 = (-A) + A where (-A) is obtained by changing the sign of every element of A which is additive inverse of the matrix

(v)
$$A+B=A+C$$

 $B+A=C+A$ \Rightarrow $B=C$ (Cancellation law)

(vi) Trace
$$(A \pm B) = trace (A) \pm trace (B)$$

SCALAR MULTIPLICATION OF MATRICES

Let $A = [a_{ii}]_{m \times n}$ be a matrix and k be a number then the matrix which is obtained by multiplying every element of A by k is called scalar multiplication of A by k and it denoted by kA.

Thus
$$A = [a_{ii}]_{m \times n} \implies kA = [ka_{ii}]_{m \times n}$$

Properties of scalar multiplication

If A, B are matrices of the same order and m, n are any numbers, then the following results can be easily established.

$$(i) m(A + B) = mA + mB$$

(ii)
$$(m + n)A = mA + nA$$

(iii)
$$m(nA) = (mn)A = n(mA)$$

MULTIPLICATION OF MATRICES

If A and B be any two matrices, then their product AB will be defined only when number of column in A is equal to the number of rows in B. If $A = [a_{ij}]_{m \times n}$ and $B = [b_{ij}]_{n \times p}$ then their product $AB = C = [c_{ij}]$, will be matrix of order $m \times p$, where

$$\left(\mathrm{AB}\right)_{ij} = \mathrm{C}_{ij} \qquad = \sum_{r=1}^{n} a_{ir} b_{rj}$$

Properties of matrix multiplication

If A, B and C are three matrices such that their product is defined, then

- (i) $AB \neq BA$ (Generally not commutative)
- (ii) (AB) C = A (BC) (Associative Law)
- (iii) IA = A = AI I is identity matrix for matrix multiplication
- (iv) A(B + C) = AB + AC (Distributive law)
- (v) If $AB = AC \Rightarrow B = C$ (cancellation Law is not applicable)
- (vi) If AB = 0 It does not mean that A = 0 or B = 0, again product of two non-zero matrix may be zero matrix.
- (vii) trance (AB) = trance (BA)

Note: (i) The multiplication of two diagonal matrices is again a diagonal matrix.

- (ii) The multiplication of two triangular matrices is again a triangular matrix.
- (iii) The multiplication of two scalar matrices is also a scalar matrix.
- (iv) If A and B are two matrices of the same order, then

(a)
$$(A + B)^2 = A^2 + B^2 + AB + BA$$

(b)
$$(A - B)^2 = A^2 + B^2 - AB - BA$$

(c)
$$(A - B) (A + B) = A^2 - B^2 + AB - BA$$

(d)
$$(A + B) (A - B) = A^2 - B^2 - AB + BA$$

(e)
$$A(-B) = (-A) B = -(AB)$$

Positive Integral powers of a matrix

The positive integral powers of a matrix A are defined only when A is a square matrix.

Also then
$$A^2 = A.A$$
 $A^3 = A.A.A = A^2A$

Also for any positive integers m, n

(i)
$$A^m A^n = A^{m+n}$$

(ii)
$$(A^{m})^{n} = A^{mn} = (A^{n})^{m}$$

(iii)
$$I^n = I$$
, $I^m = I$

(iii)
$$I^n = I$$
, $I^m = I$ (iv) $A^\circ = I_n$ where A is a square matrices of order n.

TRANSPOSE OF MATRIX

If we interchange the rows to columns and columns to rows of a matrix A, then the matrix so obtained is called the transpose of A and it is denoted by

From this definition it is obvious to note that

(i) Order of A is
$$m \times n \Rightarrow \text{ order of } A^T \text{ is } n \times m$$

(ii)
$$(A^{T})_{ii} = (A)_{ii}, "i, j)$$

Properties of Transpose

If A, B are matrices of suitable order then

(i)
$$(A^T)^T = A$$

(ii)
$$(A + B)^{T} = A^{T} + B^{T}$$

(iii)
$$(A - B)^{T} = A^{T} - B^{T}$$

(iv)
$$(kA)^T = kA^T$$

$$(v) (AB)^T = B^T A^T$$

(vi)
$$(A_1 A_2 A_n)^T = A_n^T A_2^T A_1^T$$

(vii)
$$(A^n)^T = (A^T)^n, n \in N$$

SYMMETRIC AND SKEW-SYMMETRIC MATRIX

(a) Symmetric matrix: A square matrix $A = [a_{ij}]$ is called symmetric matrix if $a_{ij} = a_{ji}$ for all $\hat{i} = \hat{j}$ or $A^T = A$.

(i) Every unit matrix and square zero matrix are symmetric matrices.

(ii) Maximum number of different element in a symmetric matrix is
$$\frac{n(n+1)}{2}$$

(b) Skew-symmetric matrix : A square matrix $A = [a_{ii}]$ is called skew-symmetric matrix if

$$a_{ij} = -a_{ji}$$
 for all i, j or $A^{T} = -A$

- Note: (i) All principal diagonal elements of a skew-symmetric matrix are always zero because for any diagonal element - $a_{ii} = -a_{ii} \implies a_{ii} = 0$
 - (ii) Trace of a skew symmetric matrix is always 0

Properties of symmetric and skew-symmetric matrices

- If A is a square matrix, then $A + A^{T}$, AA^{T} , $A^{T}A$ are symmetric matrices while $A-A^{T}$ is skew-symmetric (i) matrices.
- (ii) If A, B are two symmetric matrices, then-
 - (a) $A \pm B$, AB + BA are also symmetric matrices.
 - (b) AB BA is a skew-symmetric matrix.
 - (c) AB is a symmetric matrix when AB = BA
- (iii) If A, B are two skew-symmetric matrices, then-
 - (a) $A \pm B$, AB BA are skew-symmetric matrices.
 - (b) AB + BA is a symmetric matrix.

- (iv) If A is a skew-symmetric matrix and C is a column matrix, then C^T AC is a zero matrix.
- (v) Every square matrix A can be uniquely be expressed as sum of a symmetric and skew symmetric matrix i.e.,

$$\boldsymbol{A} = \left\lceil \frac{1}{2} (\boldsymbol{A} + \boldsymbol{A}^\mathsf{T}) \right\rceil \! + \! \left\lceil \frac{1}{2} (\boldsymbol{A} - \boldsymbol{A}^\mathsf{T}) \right\rceil$$

DETERMINANT OF A MATRIX

$$\text{If } A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \text{ be a square matrix, then its determinant, denoted by } |A| \text{ or det. (A) is }$$

$$\text{defined as} \ |A| = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Properties of the determinant of a matrix

- (i) |A| exist \Leftrightarrow A is a square matrix
- (ii) |AB| = |A| |B|
- (iii) $|A^T| = |A|$
- (iv) $|kA| = k^n |A|$, if A is a square matrix of order n.
- (v) If A and B are square matrices of same order then |AB| = |BA|
- (vi) If A is skew symmetric matrix of odd order then |A| = 0
- (vii) If $A = \text{diag } (a_1, a_2,a_n) \text{ then } |A| = a_1 a_2 a_n$
- (viii) $|A|^n = |A^n|, n \in N$

ADJOINT OF A MATRIX

If every element of a square matrix A be replaced by its cofactor in |A|, then the transpose of the matrix so obtained is called the adjoint of A and it is denoted by adj A

Thus if $A = [a_{ij}]$ be a square matrix and C_{ij} be the cofactor of a_{ij} in |A|, then adj $A = [C_{ii}]^T$

$$\Rightarrow$$
 $(adj A)_{ij} = C_{ij}$

$$\text{Hence if } A = \begin{bmatrix} a_{11} & a_{12} & & a_{1n} \\ a_{21} & a_{22} & & a_{2n} \\ & & & \\ a_{n1} & a_{n2} & & a_{nn} \end{bmatrix}, \text{ then } \text{adj } A = \begin{bmatrix} C_{11} & C_{12} & & C_{1n} \\ C_{21} & C_{22} & & C_{2n} \\ & & & \\ C_{n1} & C_{n2} & & C_{nn} \end{bmatrix}^T = \begin{bmatrix} C_{11} & C_{21} & & C_{n1} \\ C_{12} & C_{22} & & C_{n2} \\ & & & \\ C_{1n} & C_{2n} & & C_{nn} \end{bmatrix}$$

Properties of Adjoint Matrix

If A, B are square matrices of order n and I_n is corresponding unit matrix, then

- (i) $A (adj A) = |A| I_n = (adj A) A$ (Thus A (adj A) is always a scalar matrix)
- (ii) $|adj A| = |A|^{n-1}$
- (iii) adj (adj A) = $|A|^{n-2}$ A

(iv)
$$|adj (adj A)| = |A|^{(n-1)^2}$$

 $adi(A^{T}) = (adi A)^{T}$ (v)

(vi)
$$adj(AB) = (adj B)(adj A)$$

 $adj (A^m) = (adj A)^m, m \in N$ (vii)

(viii) adj (kA) =
$$k^{n-1}$$
 (adj A), $k \in R$

 $adj(I_n) = I_n$ (ix)

(x)
$$adj 0 = 0$$

A is symmetric \Rightarrow adj A is also symmetric.

(x) adj
$$0 = 0$$

(xi)

 \Rightarrow adj A is also diagonal. (xii) A is diagonal

A is triangular \Rightarrow adj A is also triangular. (xiii)

(xiv) A is singular
$$\Rightarrow$$
 |adj A| = 0

INVERSE MATRIX

If A and B are two matrices such that

$$AB = I = BA$$

then B is called the inverse of A and it is denoted by A⁻¹. Thus

$$A^{-1} = B \iff AB = I = BA$$

Further we may note from above property (i) of adjoint matrix that if $|A| \neq 0$, then

$$A\frac{\text{adj }(A)}{|A|} = I = \frac{(\text{adj }A)}{|A|}A$$

 $\Rightarrow A^{-1} = \frac{1}{|A|} \text{ adj } A$

Thus A^{-1} exists \Leftrightarrow $|A| \neq 0$.

Note:

- (i) Matrix A is called invertible if A⁻¹ exists.
- (ii) Inverse of a matrix is unique.

Properties of Inverse Matrix

(i)
$$(A^{-1})^{-1} = A$$

(ii)
$$(A^T)^{-1} = (A^{-1})^T$$

(iii)
$$(AB)^{-1} = B^{-1}A^{-1}$$

(iv)
$$(A^n)^{-1} = (A^{-1})^n, n \in N$$

(v)
$$adj (A^{-1}) = (adj A)^{-1}$$

(vi)
$$|A^{-1}| = \frac{1}{|A|} = |A|^{-1}$$

(vii)
$$A = diag(a_1, a_2,, a_n) \implies A^{-1} = diag(a_1^{-1}, a_2^{-1},, a_n^{-1})$$

(viii) A is symmetric
$$\Rightarrow$$
 A^{-1} is also symmetric.

(ix) A is diagonal
$$|A| \neq 0 \implies A^{-1}$$
 is also diagonal.

(x) A is scalar matrix
$$\Rightarrow$$
 A⁻¹ is also scalar matrix.

(xi) A is triangular
$$|A| \neq 0 \implies A^{-1}$$
 is also triangular.

SOME IMPORTANT CASES OF MATRICES

Orthogonal Matrix

A square matrix A is called orthogonal if

$$AA^{T} = I = A^{T}A$$
 ; i.e., if $A^{-1} = A^{T}$

Idempotent matrix

A square matrix A is called an idempotent matrix if $A^2 = A$

Involutory Matrix

A square matrix A is called an involutory matrix if $A^2 = I$ or $A^{-1} = A$

Nilpotent matrix

A square matrix A is called a nilpotent matrix if there exist a $p \in N$ such that

$$A^P = 0$$

Hermition matrix

A square matrix A is skew-Hermition matrix if $A^q = A$; i.e., $a_{ij} = -\overline{a}_{ji}$ "i, j

Skew hermitian matrix

A square matrix A is skew-hermition is $A = -A^q$ i.e., $aij = -\overline{a}_{ji}$ "i, j

Period of a matrix

If for any matrix A $A^{k+1} = A$ then k is called period of matrix (where k is a least positive integer)

Differentiation of matrix

$$\begin{split} \text{If} & A = \begin{bmatrix} f(x) & g(x) \\ h(x) & \ell(x) \end{bmatrix} \\ \text{then } & \frac{dA}{dx} = \begin{bmatrix} f'(x) & g'(x) \\ h'(x) & \ell'(x) \end{bmatrix} \text{ is a differentiation of matrix } A \end{split}$$

Submatrix

Let A be $m \times n$ matrix, then a matrix obtained by leaving some rows or columns or both of a is called a sub matrix of A

Rank of a matrix

A number r is said to be the rank of a m \times n matrix A if

- (a) every square sub matrix of order (r + 1) or more is singular and
- (b) there exists at least one square submatrix of order r which is non-singular.

Thus, the rank of matrix is the order of the highest order non-singular sub matrix.

We have |A| = 0 therefore r (A) is less then 3, we observe that $\begin{bmatrix} 5 & 6 \\ 4 & 5 \end{bmatrix}$ is a non-singular square sub matrix of order 2 hence r (A) 2.

Note:

- (i) The rank of the null matrix is zero.
- (ii) The rank of matrix is same as the rank of its transpose i.e., $r(A) = r(A^{T})$
- (iii) Elementary transformation of not alter the rank of matrix.

